
Série N° 4: Ampli-Diff  

Ex 1 Amplificateur différentiel dégénéré:  
1. Calcul des gains 

Le circuit étant entièrement symétrique, on peut utiliser la méthode du demi-circuit équivalent. Fig. 1.a remontre le 
schéma complet dans lequel la résistance de dégénération est divisée en deux. Pour un signal d’entrée différentiel, le 
potentiel du point X ne varie pas et donc, pour le circuit équivalent AC, ce point peut être considéré comme une masse 
virtuelle. Nous obtenons ainsi le schéma équivalent de la fig. 1.b. Ce schéma est celui d’un émetteur commun 
dégénéré (traité dans le chap. 2 slide 19) 

 
Fig. 1 a) Paire différentielle dégénérée scindée en deux b) Demi-circuit équivalent AC 

AD : En se référant à la fig. 1.b, on a  
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Avec (voir résistances aux accès chap. 2 slide 18) 
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Avec 1/gbe = /gm, il vient : 
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si gm·(R0/2) >> 1, le gain différentiel est déterminé par le rapport des résistances : 
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Par conséquent le gain en tension dépend presque exclusivement du rapport des résistances RL et Ro plutôt 
que des caractéristiques intrinsèques du transistor (gm). Les caractéristiques de distorsion et de stabilité du 
circuit sont donc améliorées au détriment d'une réduction de gain. 

Applications numériques : Afin d’examiner la validité de l’équation (1.3), On calcule le gm des transistors 

bipolaires. En négligeant le courant de base, on a : IC0 ≈ Iq et : 
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On peut donc calculer le gain différentiel en utilisant la relation approximative (1.3) : 
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Remarque: L’èlaboration du circuit de la figure 1 peut aussi se faire par la transformation « étoile-triangle». 
(voire https://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_de_Kennelly pour plus de détails) 

En effet, une fois que les sources de courant sont remplacés par leur résistance de sortie en ac le schema entre 
les éméteures de la paire différentielle devient: 

   Avec :  
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La symétrie de l’ampli et son fonctionnement différentiel nous donne un ie1 = - ie2 et donc un io = ie1 + ie2 = 
0. La résistance R0 n’étant parcourue par aucun courant en ac, le nœud o peut être considéré comme une 
masse virtuelle. En outre, si on considéré que les sources de courant sont idéales (c.à.d. leur Rs infinie), nous 
aurons : 
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2. Calcul des gains avec gs non-nul 

A partir de la fig. 1.a et en considérant que les sources de courant présentent une conductance de sortie gs, 
on obtient le schéma équivalent AC de la fig. 2.a. Pour une entré différentielle le potentiel du nœud X est 
toujours constant. Le demi-circuit équivalent est donc celui de la fig. 2.b. Pour une entrée en mode commun, 
grâce à la symétrie, il n’y a aucun courant qui circule dans les résistances R0/2. Il ne reste donc que gs dans 
l’émetteur, comme le montre le demi-circuit équivalent de la fig. 2.c. 
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Fig. 2 a) Circuit équivalent AC de la paire diff. pour gs ≠ 0 b) Demi-circuit équivalent AC pour le calcul du gain 
AD c) et du gain AC 

En appliquant de nouveau la relation générale (1.1) aux fig. 2.b et 2.c, les gains AD et AC sont directement 
calculés. On notera qu’en général, la résistance de sortie des sources de courant est d’une valeur beaucoup 
plus élevée que celle de la dégénération. Avec cette condition, le gain différentiel n’est pas affecté par le gs 
non-nul. 
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La première approximation ci-dessus est valable pour 1/gs >> R0/2 et la seconde pour 1/gm << R0/2. 
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Qui peut être remplacé par 



 

La condition gm >> gs est souvent vérifiée, la relation (1.6) devient alors : 

Ls

s

L
C Rg

g/1

R
A        (1.7) 

CMRR : 

Le taux de réjection en mode commun peut être calculé d’après les relations (1.4) et (1.6) : 
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Avec les conditions 1/gs >> R0/2 >>1/gm , les relations (1.5) et (1.7) s’appliquent et on obtient : 
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Applications numériques : 

On vérifie que :     m0s g/12/Rg/1         325k5k500 , 

on peut donc utiliser les relations approximatives (1.5), (1.7) et (1.9) : 
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3. Cas particulier : R00 

Avec R0 nul, et en se référant à la fig. 2.b, l’émetteur est connecté à la masse. On peut remplacer R0 par 0 
dans la relation (1.2) ou bien (1.4) pour le gain différentiel : 
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On obtient ainsi : AD ≈ –153,8 et CMRR ≈ 63,7dB. On remarque que le gain différentiel et donc le taux de 
réjection en mode commun augmentent considérablement, au dépend d’une linéarité d’ampli. bien plus faible 
(compromis gain/linéarité) et une dépendance du gain au gm. 

 

 
  



Ex 2 Amplificateur Diff (exercices supplémentaires): 
 

Calculer 𝐴௠ௗ =
௩೚ೠ೟
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 . Pour tous les circuits, on suppose que : R1 = R2 , β >>1 et VA infinie. 
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 Circuit symétrique et signaux diff  le nœud P et 
un masse virtuelle  méthode demi-circuit aboutie à un 
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Démonstration de Rout : 

 

 

 

 

 

 

 

 

 

b-  

Circuit symétrique et signaux diff  le nœud P et un masse virtuelle 
 méthode demi-circuit aboutie à un EC  
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c-  

Circuit symétrique et signaux diff  le nœud P et une 
masse virtuelle  méthode demi-circuit aboutie à  
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vc1 étant le signal sur le collecteur de Q1 on peut donc 

écrire:         
௩೎భ

௩೔೙
= −𝑔௠ଵ𝑅௢௨௧ 
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